Главная    ВС и сети    Сети: обзор беспроводных технологий связи

Обзор беспроводных технологий связи

В настоящее время технология беспроводной связи переживает настоящий бум своего развития. В основном это связано с прочным входом в нашу жизнь смартфонов, планшетных компьютеров и нетбуков, которые для полноценного использования требуют постоянный доступ к сети интернет, в том числе и при движении.

Кроме этого, в промышленности, сельском хозяйстве ну и естественно в военной сфере назревает необходимость в организации надежных систем управления распределенными объектами и объединение их в глобальную сеть. Подобные тенденции наблюдаются во всем мире и ведут к неминуемому развитию беспроводных технологий связи.

Подтверждению этому служит огромное количество статей и аналитических обзоров, которые выдаются в поисковых системах по запросу сетецентрические технологии и системы.

Термин сетецентризм подразумевает под собой наличие единого информационного пространства, максимизации ситуационной осведомлённости всех входящих в него абонентов и непрерывности взаимодействия. Что естественным образов подразумевает под собой кардинальный пересмотр отношения к системам связи, в том числе и к беспроводным связям, что неминуемо ведет к их активному развитию и совершенствованию.

В этой статье я проведу краткий обзор существующих коммерческих технологий и стандартов беспроводной связи. Чтобы было проще ориентироваться в большой номенклатуре технологий, введем классификацию по дальности связи и количеству абонентов входящих в беспроводную сеть. Всего введем шесть градации:

1. Персональные беспроводные сети.
2. Беспроводные сенсорные сети.
3. Малые локальные беспроводные сети.
4. Большие локальные беспроводные сети.
5. Глобальные беспроводные сети.
5.1 Мобильная связь поколения 1G.
5.2 Мобильная связь поколения 2G.
5.3 Мобильная связь поколения 2.5G.
5.4 Мобильная связь поколения 3G.
5.5 Мобильная связь поколения 3.5G.
5.6 Мобильная связь поколения 4G.
5.7 Другие глобальные беспроводные сети.
6. Спутниковая связь.

1. К персональным беспроводным сетям относятся:

IrDA (Infrared Data Association), инфракрасный порт – группа стандартов, описывающих протоколы физического и логического уровня передачи данных по оптической линии связи с использованием инфракрасного диапазона световых волн. Сейчас ИК-порты в основном используются в пультах управления. В телефонах, смартфонах, ноутбуках и в другой вычислительной технике их вытеснили такие беспроводные линии связи, как Bluetooth, Wi-Fi и т.д. из-за маленькой дальности, возможности передачи данных только при прямой видимости приемника и передатчика и других особенностей устройства ИК-портов.

Bluetooth – спецификация радиосвязи малого радиуса действия (обычно до 200 метров) в диапазоне частот свободном от лицензирования (ISM-диапазоне: 2,4-2,4835 ГГц). В основу радиосвязи Bluetooth положен алгоритм FHSS (Frequency Hopping Spread Spectrum) обеспечивающий псевдослучайную перестройку частот 1600 раз в секунду (раз в 625 Мкс). Для перестройки доступно 79 рабочих частот в диапазоне 1 МГц. В некоторых странах количество выделяемых частот уже, так в Японии, Франции и Испании – 23 частотных канала. Последовательность переключения частот знают только передатчик и приемник, входящие в одну и ту же сеть, которые синхронно переключают рабочие частоты. Для другой пары приемник-передатчик последовательность переключения будет отличаться. Благодаря этому возможна одновременная работа нескольких пар приемник-передатчик в перекрывающихся областях передачи данных.

UWB (Ultra-Wide Band) – технология беспроводной связи на малых дальностях (около 10 метров), использующая на сегодняшней день (01.09.2012) самый широкий диапазон частот для коммерческих устройств связи. Так в США выделен диапазон от 3.1 до 10.6 ГГц, в Евросоюзе от 6 до 8 ГГц, в России от 2,85 до 10 ГГц. Большие проблемы на пути становления этой технологии связаны с пересечением диапазона частот с частотами многих военных и гражданских радаров и других изделий. Однако, благодаря сверхмалой дальности связи и использования малой мощности, сигналы устройств созданных на базе технологии UWB не сказываются на работе военной и гражданской технике использующей те же диапазоны частот. Использование широкого диапазона частот позволяет достичь огромных скоростей, однако скорость очень быстро падает с увеличением дальности. Так на дальности 3 м обеспечивается скорость до 480 Мбит/с. На дальности 10 метров скорость будет уже 110 Мбит/с. Такое большое снижение скорости связано с большим искажением широкополосного сигнала за счет дисперсии электромагнитного изучения.

Wireless USB, беспроводной USB – предназначен для замены проводного USB. Основная задача WUSB обеспечение высокоскоростного обмена на сверхмалых расстояниях и обеспечение взаимодействия персонального компьютера с периферийным оборудованием: сканерами, принтерами, видео и фото камерами, внешними жесткими дисками и так далее. Высокая скорость (до 180 Мбит/с) обеспечивается на расстояниях до 10 метров и критически сильно падает при увеличении расстояния между приемником и передатчиком. Высокая скорость обеспечивается за счет применения широкополосного сигнала по технологии UWB, им же объясняется и малые расстояния передачи данных.

Wireless HD – беспроводная технология передачи данных, в основном предназначенная для передачи HD-видео, однако ничего не мешает использовать ее для организации беспроводной сети. Теоретическая максимальная пропускная способность Wireless HD может достигать 28 Гбит/с на расстоянии до 10 Метров. Столь большую пропускную способность обеспечивает работа с широкополосным сигналом (7 ГГц) при частоте сигнала в районе 60 ГГц. Однако это приносит и существенные проблемы: для передачи сигнала на частоте в районе 60 ГГц требуется, чтобы приемник и передатчик находились в зоне прямой видимости друг-друга, иначе предметы, попавшие между ними, будут прерывать сигнал и передача будет неустойчивой.
Для обеспечения стабильной связи в помещениях, где далеко не всегда есть возможность располагать устройства в зоне прямой видимости, разработчики приложили немало усилий и значительно смягчили жесткие ограничения передачи данных на сверхвысоких частотах. В основном это было обеспечено за счет ввода распределенной системы антенн, которые образуют сеть, позволяющую поддерживать стабильную передачу данных.

WiGig (IEEE 802.11ad.) – технология широкополосной беспроводной связи, работающая в нелицензируемой полосе частот 60 ГГц и обеспечивающая передачу данных до 7 Гбит/с на расстояния до 10 метров. WiGig обратно совместим со стандартом Wi-Fi (IEEE 802.11).
Использование для передачи данных диапазона частот в районе 60 ГГц приводит к быстрому затуханию сигнала и необходимости обеспечения прямой видимости между приемником и передатчиком. Для уменьшения влияния негативных эффектов в WiGig используется узконаправленная передача сигнала, что требует дополнительного времени для установки связи (до нескольких секунд). Если установить связь в зоне прямой видимости не удалось, то технология предусматривает возможность передачи данных на пониженных частотах - 2,4 и 5 ГГц.

WHDi, Wireless Home Digital Interface (Amimon) – беспроводная технология передачи данных, используемая для высокоскоростной передачи данных и оптимизированная для передачи видео высокого разрешения. Технология WHDi позволяет, например, связывать компьютер или ноутбук с монитором без проводов.
Для передачи используется частотный диапазон 5 ГГц обеспечивающий скорость 3 ГБит/с. В WHDi используется специальная технология кодирования «video-modem» обеспечивающая помехозащищенность и защиту от ошибок передачи данных, и как результат высокое качество ретранслируемого видео.

LibertyLink – технология организации беспроводной персональной сети, разработанная компанией Aura. Для передачи информации используется эффект магнитной индукции. Вокруг передатчика образуется магнитное поле, модулированное за счет использования Гауссовского смещения. Приемник, находящийся в магнитном поле, чувствителен к его модуляциям, из-за которых возникает наведенный ток. Изменения силы тока, возникающего в приемнике, преобразуются в данные. Технология LibertyLink позволяет передавать данные со скоростью до ~200 Кб/с на дальности до 3 метров.

DECT/GAP – цифровая усовершенствованная система беспроводной телефонии -технология беспроводной связи, используемая в современных радиотелефонах. Для передачи данных используется частота 1880—1900 МГц в Европе и 1920—1930 МГц в США. Передача данных основывается на методе с использованием нескольких несущих и принципа множественного доступа с разделением времени. Канал разделяется на кадры длительностью 10 мс. Каждый кадр делится на 24 слота, каждый из которых может использоваться для передачи и приема данных. Обычно первые 12 слотов используются для передачи данных, а следующие 12 слотов – для приема. Использование технологии DECT/GAP позволяет получить качественную передачу голоса по беспроводному каналу связи, высокую помехозащищенность, безопасность и защиту от прослушивания, и все это при низком уровни излучения, безопасном для здоровья.

2. К беспроводным сенсорным сетям относятся:

DASH7 – стандарт организации беспроводных сенсорных сетей.
Сенсорная сеть – это сеть миниатюрных вычислительных устройств, снабженных сенсорными датчиками (например, датчиками температуры, давления, движения, освещенности и так далее), приемо-передатчиками сигнала и миниатюрным источником питания. Дальность беспроводной связи зависит от мощности передаваемого сигнала, и с увеличением дальности сильно падает пропускная способность линии связи. Так как сенсорная сеть под собой понимает использование миниатюрных автономных датчиков, то и мощность сигнала сильно ограничена, так как увеличение мощности ведет к сокращению срока автономной работы датчиков.
В стандарте DASH7 используется частота сигнала 433 МГц, находящаяся в нелецензируемом диапазоне частот. При передачи данных на расстояние до 2 км обеспечивается скорость 200 Кб/с. Технология DASH7 открытая и составляет серьезную конкуренцию патентованным технологиям организации беспроводных сенсорных сетей, таких как ZigBee или Z-Wave.

Z-Wave – технология беспроводной радиосвязи, используемая для организации сенсорных сетей. Основное назначения сетей Z-Wave - дистанционное управление бытовой техникой и различными домашними устройствами, обеспечивающими управление освещением, отоплением и другими устройствами для автоматизации управления жилыми домами и офисными помещениями.
Технология Z-Wave обеспечивает передачу данных на расстояние до 30 метров в условиях прямой видимости со скоростью 9,6 кбит/с или 40 кбит/с, при частотах 869.0 МГц в России, 908.42 МГц в США, 868.42 МГц в Европе и т.д.
Так как в домашних условиях и в условиях офиса невозможно обеспечить нахождения всех датчиков сети в прямой видимости друг друга, в стандарте Z-Wave каждый узел или устройство могут ретранслировать данные другим узлам. Таким образом, если требуется передать данные узлу, который находится вне зоны видимости, это можно сделать через цепочку узлов. Причем сети Z-Wave обладают элементами самоорганизации в зависимости от внешних факторов. Например, при возникновении преграды между двумя ближайшими узлами сети, сигнал будет автоматически передан через цыпочку других узлов сети.

Insteon – комбинированная (частично проводная и частично беспроводная) сенсорная сеть. Для передачи информации используется радиосигнал на частоте 902-924 МГц, обеспечивающий передачу данных на дальности до 45 метров в условиях прямой видимости со средней скоростью 180 бит/с. Для передачи информации по проводу используется электропроводка дома или офиса. Использование комбинированной сети повышает ее надежность и позволяет избежать проблем, связанных с помехами или перекрытиями зон видимости при передаче данных по радиоканалу. Сенсорная сеть Insteon обычно используется для автоматизации дома или офиса. Свое начало берет из США, где была создана для замены сенсорной сети Х10 и откуда перебралась в Европу.

EnOcean - технология организации беспроводных сенсорных сетей, использующая сверхминиатюрные датчики с генераторами электроэнергии, микроконтроллерами и приемо-передатчиками. Использование генераторов электроэнергии и элементов со сверхнизким энергопотреблением, позволяет элементам сети EnOcean работать автономно, практически без элементов питания, очень длительный период времени. Сети EnOcean в основном используются для автоматизации домов и офисов. Технология EnOcean позволяет передавать данные на частоте 868 МГц (для Европы, в других странах частота может отличаться, так как это лицензируемый диапазон частот) со скоростью 120 Кбит/с на расстояния до 300 метров в пределах прямой видимости. Естественно, в помещениях этот показатель значительно меньше и зависит от материалов стен и планировки здания. Каждый элемент сети имеет свой 32-х разрядный идентификационный номер и протокол обмена, защищающий от взаимных помех соседние датчики, что позволяет устанавливать до 4 миллиардов устройств в непосредственной близости друг от друга (по данным с сайта разработчиков технологии) без взаимной интерференции.

ISA100.11a – стандарт организации промышленных сенсорных сетей, сетей датчиков и приводов. Для передачи используется низкоскоростная беспроводная связь с использованием элементов с низким энергопотреблением. Отличительная особенность ISA100.11a от других сенсорных сетей:
– ориентированность на промышленное использование и соответственно специфические требования к прочности, помехозащищенности, надежности и безопасности,
– возможность эмуляции средствами технологии ISA100.11a протоколов уже существующих и проверенных проводных и беспроводных сенсорных сетей.
Обмен данными осуществляется на частоте в районе 2,4 ГГц и скорости порядка 250 кбит/с.

WirelessHART – протокол передачи данных по беспроводной линии связи, разработанный HART Communication Foundation для передачи данных в виде HART сообщений в беспроводной среде. HART – протокол обмена данными для взаимодействия с полевыми датчиками на основе расширяемого набора простых команд «запрос-ответ», передаваемых в цифровом виде по 2-проводной линии. WirelessHART обеспечивает передачу данных со скоростью до 250 кбит/с на расстояние до 200 м (в пределах прямой видимости) при частоте передачи данных в диапазоне 2.4 ГГц.

MiWi – протокол для организации сенсорных и персональных сетей с низкой скоростью передачи данных на небольшие расстояния, основанный на спецификации IEEE802.15.4 для беспроводных персональных сетей. Сеть на базе MiWi может содержать до 1024 узлов, управляемых до 8 координаторами. Каждый координатор может обеспечивать взаимодействие до 127 узлов. Передача данных ведется в диапазоне частот 2.4 ГГц (предусмотрена работа в диапазоне частот 868 МГц и 915 МГц с более низкими скоростями) при скорости до 250 Кб/с.

6LoWPAN – стандарт, обеспечивающий взаимодействие малых беспроводных сетей (частных сетей или сетей датчиков) с сетями IP по протоколу IPv6. Используется в основном для организации сетей датчиков и автоматизации жилого и офисного помещения с возможностью управления через интернет, однако могут использоваться и автономно как простые беспроводные сети датчиков. Передача данных в стандарте 6LoWPAN подразумевает использование субгигагерцового диапазона и обеспечивает скорость передачи от 50 до 200 кбит/с на расстояние до 800 метров.

One-Net – открытый протокол для организации беспроводных сенсорных сетей и сетей автоматизации зданий и распределенных объектов. Позволяет организовывать сети, включающие в себя до 4096 узлов с несколькими координаторами и ретрансляторами, увеличивающими дальность передачи данных. Передача данных обеспечивается на расстояния до 100 метрах в помещении и до 500 метрах на открытых пространствах при скорости передачи данных 28.4 – 230 Кбит/с.

Wavenis – беспроводная технология передачи данных, использующая частоты 433/868/915 МГц и обеспечивающая передачу на расстояние до 1000 м на открытом пространстве и до 200 м в помещении при скорости до 100 Кбит/с. Технологию Wavenis используют для организации персональных сетей и сетей датчиков, так как сверхнизкое потребление приемо-передающих устройств позволяет им работать автономно до 15 лет от одной батарейки.

RuBee – локальная беспроводная сеть, которая, в основном, используется как сеть датчиков. Для передачи данных в RuBee используются магнитные волны, и передача осуществляется на частоте 131 КГц, что обеспечивает скорость всего лишь 1200 бот в секунду на расстояниях от 1 до 30 метров. Однако позволяет значительно снизить энергопотребление и позволяет узлам сети работать автономно в течении нескольких лет от одной батарейки.
Используется сеть, в основном, для специфических целей, не требующих большого быстродействия, но требующих долгой автономной работы и надежной, защищенной связи. Использование низкой частоты позволяет избежать проблем связанных с передачей данных в помещениях, так как сигнал не отражается и не блокируется стенами и другими предметами. Сеть RuBee в США сертифицирована Министерством Обороны и Министерством Энергетики и рекомендована для использования в объектах повышенной опасности.

3. К малым локальным беспроводным сетям относятся:

HiperLAN (High Performance Radio LAN) – стандарт беспроводной связи. Существует две ревизии стандарта: HiperLAN 1 и HiperLAN 2. Стандарт HiperLAN 1 выпущен 1981 году и описывает более медленную линию связи, обеспечивающую скорость передачи данных до 10Мбит/с на расстоянии до 50 метров. В данной ревизии использовался асинхронный режим передачи и механизм множественного доступа, аналогичный используемому в семействе локальных сетей шинного типа со случайным доступом с предотвращением конфликтов.
Выпущенная в 2000 году ревизия стандарта уже описывает более высокоскоростную беспроводную линию передачи данных. HiperLAN 2 использует для передачи данных широкополосный сигнал на частоте в районе 5 ГГц, обеспечивающий скорость передачи данных до 54 Мбит/с на расстоянии до 150 метров. При этом обе ревизии позволяют работать с мобильными объектами, передвигающимися со скоростью до 1.4 м/с (ревизия HiperLAN 1 ) и до 10 м/с (ревизия HiperLAN 2).

Wi-Fi – торговая марка объединения Wi-Fi Alliance, представляющая собой семейство стандартов спецификации IEEE 802.11 для широкополосной радиосвязи. В зависимости от стандарта, Wi-Fi использует для передачи данных диапазон частот в районе 2,4 ГГц или 5 ГГц и обеспечивает скорость передачи данных от 2 Мбит/с на расстояниях до 200 метров. Wi-Fi используется для организации беспроводных локальных сетей и беспроводного подключения к Интернету. Wi-Fi одна из самых популярных групп стандартов и повсеместно используется для организации домашних и офисных сетей, публичного доступа к Интернету в гостиницах, кафе, магазинах и в других публичных местах.

Zigbee – технология организации беспроводных сенсорных и персональных сетей. Технология Zigbee обеспечивает невысокое потребление энергии и передачу данных на нелецензируемой частоте 2.4 ГГц (для различных стран частота может отличаться) со скоростью до 250 Кб/с, на расстояние до 75 метров в условиях прямой видимости. Поддерживаются как простые сети типа точка-точка и звезда, так и сложные сети с ретрансляцией и автоматической маршрутизацией, позволяющие передавать данные между двумя узлами, находящимися не в зоне прямой видимости, через цепочку узлов сети.
Сети Zigbee используются как для коммутации отдельных устройств, например, беспроводных наушников или колонок с компьютером или смартфоном, так и для организации сложных сетей по автоматизации управления домом и офисом.

RONJA (Reasonable Optical Near Joint Access) – технология беспроводной передачи данных с использованием оптического сигнала. Используется для организации полнодуплексных соединений тип точка - точка по стандарту Ethernet, обеспечивая скорость передачи данных до 10 Мбит/с на расстоянии до 1.4 км при примой видимости абонентов. При сложных погодных условиях (снег, дождь, туман) дальность и скорость связи значительно падает, и могут возникать сбои при передаче данных.

4. К большим локальным беспроводным сетям относятся:

WiMAX (Worldwide Interoperability for Microwave Access) – беспроводная технология передачи данных основанная на стандарте IEEE 802.16. Основное назначение технологии – это высокоскоростная связь на больших расстояний и предоставление доступа в интернет. Существует две ревизии WiMAX, одна из которых (собственно WiMAX) основана на стандарте IEEE 802.16d, а вторая (WiMAX Mobile) основана на стандарте IEEE 802.16e. В разработке находится третья ревизия - WiMax 2, которая будет значительно опережать по скорости и дальности связи первые две ревизии.
WiMAX осуществляет передачу данных на частоте 1,5-11 ГГц со скоростью до 75 Мбит/с на расстояние до 80 км. WiMAX Mobile осуществляет передачу данных на частоте 2,3-13,6 ГГц со скоростью до 40 Мбит/с на расстояние до 5 км. Подробнее об устройстве и принципах работы
WiMAX (Worldwide Interoperability for Microwave Access) можно почитать на сайте "Системы и сети" (systemseti.com).

HiperMAN - беспроводная технология передачи данных на базе стандарте IEEE 802.16. Европейская альтернатива технологии WiMAX. HiperMAN специализирован для пакетной передачи данных и организации беспроводных IP-сетей. Имеет характеристики (диапазон частот, скорость и дальность передачи данных) схожие с технологией WiMAX.

WiBro (Wireless Broadband) – беспроводная технология высокоскоростной передачи данных на большие расстояния, основанная на стандарте IEEE 802.16e. Северокорейский аналог технологии WiMAX Mobile. Для передачи данных используется диапазон частот 2,3-13,6 ГГц, при этом в Северной Корее выделен диапазон 2,3-2,4 ГГц. Максимальная пропускная способность базовых станций составляет 30-50 Мбит/с на дальностях до 5 км при движении объекта со скоростью меньше 120 км/ч.

Classic WaveLAN – технология беспроводной связи используемая для организации локальных сетей (беспроводная альтернатива проводных сетей Ethernet и Token Ring). Передача данных осуществляете в диапазоне частот в 900 МГц или 2.4 ГГц, при этом обеспечивается скорость передачи до 2 Мбит/с.

5. К глобальным беспроводным сетям относятся:

5.1. Мобильная связь поколения 1G

NMT (Nordic Mobile Telephone) – стандарт беспроводной аналоговой сотовой связи, разработанный в 1978 году, однако он и по сей день используется в России, имея покрытие сравнимое с суммарным покрытием всех остальных стандартов сотовой связи. NMT обеспечивает множественный доступ абонентов с частотным разделением на расстояниях свыше 70 км от базовой станции.
Передача сигнала осуществляется в диапазоне частот 450 МГц. При этом для передачи данных от абонента используется диапазон частот 453-457,5 МГц, а для приема данных от базовой станции используется диапазон 463-467,5 МГц. Внутри этих диапазонах используется нарезка на каналы с шагом 12.5 КГц.
Использование частоты в диапазоне 450 МГц приводит к большому количеству помех в больших городах, но большая дальность связи позволяет получить хорошую связь в пригородах и вдали от городов.

AMPS (Advanced Mobile Phone System) - стандарт беспроводной аналоговой сотовой связи используемый с 1983 года. Впервые был применен в США, сейчас используется во многих европейских странах, в том числе и в России (компания Билайн). AMPS обеспечивает множественный доступ абонентов с частотным разделением. Так же как и в стандарте NMT для передачи и для приема данных используются отдельные диапазоны частот, которые нарезаются на каналы (один канал – 30КГц). Всего поддерживается 832 канала. Схема построения сети очень похожа на схему сети GSM, в которой используется сеть базовых станций, размещенных в углах сот, и центров коммутации.

TACS (Total Access Control System) – аналоговая система беспроводной связи, разработанная на базе стандарта AMPS и используемая с 1985 года. Первая сеть была развернута в Англии, затем TACS стали использовать в таких странах как Испания, Ирландия, Австралия, Кении, Кувейте, Малайзии и в некоторых других. С мая 2001 года не используется. В системе TACS использовалась частотная модуляция (FSK). Для передачи от базовой станции использовалась полоса частот 935—950 МГц, для передачи от абонента – 890 - 905 МГц. Общее число каналов 600, с разнос в 25 кГц. Радиус действия одной базовой станции до 20 км. Система связи TACS несколько раз улучшалась. Были введены модификации ETACS, NTACS увеличивающие диапазон частот и число каналов, что позволяло увеличить число одновременно обслуживаемых абонентов и качество связи.

Mobitex – открытый стандарт беспроводной связи на основе коммутации пакетов. Сеть состоит из базовых станций и коммутаторов и представляет собой сотовую сеть для передачи данных и голоса, однако в стандарте Mobitex возможна и коммутация точка-точка между двумя абонентами минуя базовые станции, если они находятся в радиусе действия абонентской аппаратуры. Это несколько разгружает сеть. Для передачи используются диапазоны частот в районе 80, 400, 800 или 900 МГц. Теоретическая максимальная пропускная способность сети - 8 Кбайт/с. Эффективная пропускная способность значительно ниже и зависит от длинны сообщений, загруженности каналов связи и т.д. и в среднем составляет порядка 2 Кбит/с. Разработана в середине 80-х годов. Используется в 23 странах, однако она менее популярна, чем сотовые сети GSM и используется в основном группами быстрого реагирования, пожарными, военными, полицией и т.д.

DataTAC – открытый стандарт беспроводной низкоскоростной связи на основе коммутации пакетов, схож по построение со стандартом Mobitex. Для передачи обычно используется диапазон частот в районе 800 МГц, при этом обеспечивается скорость до 19,2 Кбит/с. В основном используется для передачи данных, например на основе DataTAC организованы пейджинговые сети в Канаде.

5.2. Мобильная связь поколения 2G

GSM (Global System for Mobile Communications) – наиболее распространенный на сегодняшний день (октябрь 2012) стандарт беспроводной цифровой сотовой мобильной связи. Стандарт относится к поколению 2G и обеспечивает разделение каналов по времени и частоте. Передача данных в стандарте возможна в четырех диапазонах частот 450 МГц, 900 МГц, 1800 МГц, 1900 МГц. Используемый диапазон частот зависит от типа телефона и региона в котором он применяется. Многие телефоны одновременно поддерживают несколько диапазонов, есть и такие, которые поддерживают все четыре возможных диапазона.
Сеть GSM состоит из базовых станций, центров коммуникаций и собственно абонентов – подвижных мобильных станций или просто говоря сотовых телефонов. Базовые станции располагаются в вершинах равносторонних шестиугольников, покрывая шестиугольниками все пространство, в котором должна обеспечиваться сотовая связь. Если посмотреть на схему расположения базовых станций, то она будет напоминать пчелиные соты. Диаметр каждый шестиугольной ячейки (круга в который вписан равносторонний шестиугольник) может доходить до 50 км. Теоретически диаметр может достигать 120 км, но для этого требуются специальные усилители и качество связи может быть неприемлемым.
Абонент передает данные через одну из базовых станции, которая в свою очередь ретранслируют данные через сеть базовых станций к другому абоненту, при этом при переходе абонента из одной ячейки в другую работа с новой базовой станцией обеспечивается без разрыва связи.
Центры коммуникаций обеспечивают взаимодействие между абонентами, устанавливая соединения, и обеспечивают взаимодействие между другими системами радиосвязи.

TDMA (Time Division Multiple Access) – стандарт сотовой беспроводной связи основанный на множественном доступе с разделением по времени. То есть все абоненты сети базирующееся на стандарте TDMA работают в одном диапазоне частот, но при этом каждому абоненту выделяют определенный временной слот, в котором разрешено вещание. Поочередно такой слой выделяют всем активным абонентам, циклически повторяя этот процесс. С увеличением количества активных абонентов снижается пропускная способность канала. Сети на базе TDMA очень популярны и используются более чем в 70 странах мира и продолжают развиваться, занимая второе место по популярности после сетей GSM.

PDC (Personal Digital Cellular) – стандарт, основанный на базе стандарта TDMA и используемый только в Японии. В эксплуатации с 1993 года. Передача сигнала от базовой станции к абоненту осуществляется на частоте 810-888 МГц, а от абонента к базовой станции на частоте 893-958 МГц или на частоте 1477–1501 МГц и1429–1453 МГц соответственно. Ширина одного канала – 25 КГц. Скорость передачи данных составляет 11.2 Кбит/с в трехслотовом варианте стандарта и 5.6 Кбит/с в шестислотовом варианте. Стандарт быстро вытесняется мобильной связью третьего поколения, и 31 марта 2012 года был остановлен последний сервис, использующий этот стандарт.

DAMPS – стандарт цифровой беспроводной мобильной связи с множественным доступом с разделением времени (TDMA) и частотным разделением (FDMA). Для передачи использовались частоты в диапазоне от 825 МГц до 890 МГц. Ширина одного канала для передачи данных - 30 КГц. Последние модификации стандарта по своим возможностям приближались к стандарту GSM, однако на данный момент во всем мире наблюдается переход к более быстрым и емким сетям, обеспечивающим высокоскоростной доступ в интернет, возможность ведения видеоконференций и т.д. Так что этот стандарт активно вытесняется. Например, в России диапазон частот, занимаемый этим стандартом, выделен для цифрового телевидения и с 2010 года сети стандарта DAMPS отключаются. Последняя такая сеть была отключена в октябре 2012 года.

iDEN (integrated Digital Enhanced Network) – технология беспроводной связи разработанная компанией Motorolla в середине девяностых годов. Технология основана на сети GSM и не требует установки дополнительного оборудования, кроме центральных блоков управления. Достаточно установить дополнительное программное обеспечение на базовые станции сети GSM. В основе iDEN лежит стандарт TDMA (Time Division Multiple Access) - множественный доступ с разделение по времени. Передача осуществляется в диапазоне частот 806-825/851-870 МГц, который нарезан на каналы шириной 25 КГц. Данные в канале передаются интервалами по 90 мс. Таким образом, несколько абонентов одновременно могут общаться не только в разных частотных каналах, но и на одном канале, поочередно используя его. Пропускная способность канала достигает 64 Кбит/с. Для передачи голоса используется система кодирования на базе алгоритма VSELP, позволяющая получить качественный звуковой сигнал при небольших нагрузках на канал связи.

5.3. Мобильная связь поколения 2.5G

GPRS (General Packet Radio Service) – технология пакетной радиосвязи, являющаяся надстройкой над стандартом беспроводной цифровой сотовой мобильной связи GSM. При использовании технологии GPRS данные собираются в пакеты, и только затем передается, при этом максимальная теоретическая скорость может достигать 171,2 кбит/с при средней в 50-60 кбит/с, в отличии от GSM сети, обеспечивающей максимум 14,4 Кбит/с. В основном GPRS используется для передачи данных между устройствами в сети GSM и доступа к сети Internet.

EDGE (Enhanced Data rates for GSM Evolution) – технология беспроводной передачи данных для сотовой связи, используемая в качестве надстройки в GSM сетях. За счет улучшенного адаптивного алгоритма изменения подстройки модуляции и дополнительных алгоритмов контроля и исправления ошибок увеличивается скорость и надежность передачи данных и уменьшается восприимчивость к помехам. Так, при использовании технологии EDGE, обеспечивается средняя скорость порядка 75 - 130 Кбит/с. При этом, пиковая теоретическая скорость может достигать 474 кбит/с при пакетной передаче данных.

HC-SDMA (High Capacity Spatial Division Multiple Access) или iBurst – технология беспроводной широкополосной передачи данных. На данный момент технология обеспечивает скорость передачи данных до 1 Мбит/с для стационарных и мобильных объектов (двигающихся со скоростью до 110 км/ч). Принцип построения схож с сетями GSM, так же поддерживается роуминг между базовыми стациями и обеспечивается бесшовное (безразрывное) покрытие сети для мобильных абонентов. Однако за счет «умной» адаптивной антенной системы значительно эффективнее используется разделение ресурса сети между абонентами и повышается скорость передачи данных. На данный момент (октябрь 2012) iBurst используется в 13 странах: США, Канада, ЮАР, Азербайджан, Норвегия, Ирландия, Малайзия, Ливан, Кения, Танзания, Гана, Мозамбик, Демократическая Республика Конго. В России технология пока не применяется.

CDMA (Code Division Multiplie Access) – группа стандартов сотовой связи, находящиеся в промежуточном положении между вторым (2G) и третьем поколении(3G), так называемое поколение 2.5G. Стандарты CDMA используют метод множественного доступа с кодовым разделением, когда узкополосный сигнал модулируется псевдослучайной цифровой последовательностью, в результате чего получается шумоподобный широкополосный сигнал. При приеме сигнал демодулируется и получается исходный узкополосный сигнал. Модулируя сигнал разными последовательностями можно одновременно осуществлять радиосвязь с несколькими абонентами.

5.4. Мобильная связь поколения 3G

UMTS (Universal Mobile Telecommunications System) – технология сотовой связи третьего поколения (3G), использующая для связи технологию широкополосного множественного доступа с кодовым разделением (WCDMA). UMTS обеспечивает теоретическую пиковую скорость до 21 Мбит/с, однако на практике, на данный момент (конец 2012 года), скорость значительно ниже. Так, от базовой станции к абоненту обеспечивается скорость до 7,2 Мбит/с, а от абонента к базовой станции – всего лишь 384 Кбит/с. Но, в тоже время, это значительно больше, чем обеспечивается в сети второго поколения (2G) – GSM, в которой скорость едва достигает 14,4 Кбит/с. Для передачи данных используется два канал шириной 5 МГц в диапазоне 1885 МГц — 2025 МГц и 2110 МГц — 2200 МГц. Причем первый диапазон используется для передачи данных от абонента к базовой станции, а второй – от базовой станции к абоненту. Так как выделенные по стандарту диапазоны могут пересекаться с уже используемыми, то в некоторых странах они могут отличаться, например, в США используются диапазоны 1710 МГц — 1755 МГц и 2110 МГц — 2155 МГц.

WCDMA (Wideband Code Division Multiple Access) – широкополосной вариант стандарта CDMA с гибридной фазовой манипуляцией. Новый стандарт обеспечивает скорость до 2 Мбит/с для стационарных абонентов на небольших удалениях от базовой станции, и до 384 Кбит/с для мобильных объектов двигающихся с большой скоростью. Для трансляции данных в стандарте используется две полосы частот шириной 5 МГц, одна для приема данных от базовых станции, вторая для передачи. Использование широкой полосы, новых алгоритмов кодирования, нового голосового кодека (AMR) делает стандарт WCDMA более быстрым, качественным и надежным по сравнению со своим предшественником – CDMA.

CDMA 2000 – дальнейшее развития стандарта беспроводной связи CDMA. CDMA 2000 состоит из нескольких ревизий: CDMA2000 1X, CDMA2000 1X EV-DO, CDMA2000 1X EV-DO Rev.A, CDMA2000 1X EV-DO Rev.B и других. CDMA2000 1X первый вариант стандарта. Он обеспечивал скорость до 153 кбит/с и относился к мобильной связи второго поколения. CDMA2000 1X EV-DO уже обеспечивал скорость до 2,4 Мбит/с при передачи данных от базовой станции к абоненту и до 153 кбит/с в обратном направлении и относился уже к поколению 3G. В ревизии CDMA2000 1X EV-DO Rev.A скорость передачи была еще увеличена и составила до 3,1 Мбит/с от базовой станции к абоненту и 1,8 Мбит/с обратно. В ревизии B скорости уже составили 4,9 Мбит/с и 2,4 Мбит/с, при этом была введена возможность объединения нескольких частотных каналов, что теоретически может обеспечить скорость 73,5 Мбит/с к абоненту и 27 Мбит/с от абонента. Группа стандартов получила очень широкое распространение и имеет множество модификаций отличающихся способами разделения канала, скоростью передачи, типом кодирования и т.д.

5.5. Мобильная связь поколения 3.5G

HSPA (High-Speed Packet Access) – технология беспроводной широкополосной (5 МГц) пакетной передачи данных, представляющая собой надстройку к мобильным сетям третьего поколения (WCDMA/UMTS) и позволяющая значительно увеличить их базовую скорость. Технология WCDMA позволяет получить теоретическую пиковую скорость от абонента к базовой станции до 5.7 Мбит/c, а от базовой станции к абоненту - 14.4 Мбит/с. На практике, скорости гораздо ниже и не только из-за загруженности сетей, но и из-за ограничений оборудования. Так многие абонентские устройства поддерживают максимальную скорость приема данных всего 7.2 Мбит/с. При дальнейшем усовершенствовании стандарта разработчиками заявлены скорости до 42 Мбит/с от базовой станции и до 12 Мбит/ от абонента.

5.6. Мобильная связь поколения 4G

LTE (Long-Term Evolution) – технология построения беспроводной сети нового поколения, принципиально отличающаяся от сотовых сетей поколения 2G и 3G. В сетях LTE используется технология коммутации пакетов и технология множественного доступа с ортогональным частотным разделением каналов (OFDMA) дающие кардинальные преимущества перед сетями предыдущего поколения с технологиями коммутации каналов и множественного доступа с кодовым разделением. Так теоретическая пропускная скорость от базовой станции к абоненту будет составлять до 300 Мбит/с, а от абонента к базовой станции - до 75 Мбит/с. Это позволит получить принципиально новое качество связи и позволит предоставлять ранее недоступные услуги: просмотр видео онлайн, многопользовательские онлайн игры, организации массовых видеоконференций, системы мониторинга и т.д.

5.7. Другие глобальные беспроводные сети

MMDS (Multichannel Multipoint Distribution System) – беспроводная технология передачи данных, используемая для организации телевещания. Сигнал передается в диапазоне частот 2686-2500 МГц, что обеспечивает ширину канала в 186 МГц и позволяет одновременно передавать до 24 аналоговых каналов (в России используется 8 Мгц на один аналоговый канал). По современным меркам количество каналов небольшое, да и в России перестали выдавать лицензии на вещание в диапазоне частот 2,5-2,7 ГГц, но до сих пор существует несколько вещательных центров MMDS. Изначально MMDS обеспечивает одностороннюю связь (только передачу телевизионного сигнала), однако можно настроить и двухсторонний обмен, но это требует дополнительных затрат, сравнимых с затратами на основную организацию передачи данных, и значительно уменьшает пропускную способность сети.

6. К спутниковой связи относится:

Inmarsat – система спутниковой связи, разработанная в 1979 году и используемая по сей день, для организации связи в удаленных малонаселенных областях, на морском транспорте, для определения положения абонентов, передачи данных и т.д. Это первая система общедоступной мобильной спутниковой связи. Спутниковая группировка системы Inmarsat состоит из девяти спутников, расположенных на геостационарной орбите ( из которых 4 основные, а 5 резервные) и обеспечивающих покрытие практически всего земного шара, за исключением полюсов. Вещания спутников осуществляется в диапазоне частот 1.5 ГГЦ на передачу от спутника и 1.6 ГГц на передачу к спутнику. Более подробно диапазон частот, скорость передачи, кодирование и так далее описаны в стандартах, коих на данный момент насчитывается более шести: Inmarsat-A, Inmarsat-C, Inmarsat-D/D+, Inmarsat-M, Inmarsat-phone mini-M, Inmarsat-M4 и др.

Global Star – спутниковая система связи, предназначенная для организации спутниковой связи совместно со стандартными сотовыми сетями, дополняя их и обеспечивая связь с труднодоступными регионами земного шара. Система Global Star состоит из 48 основных и 4 резервных низкоорбитальных спутников, находящихся на круговых орбитах на высоте примерно 1414 км. Система Global Star обеспечивает покрытие земли от 70° южной широты до 70° северной широты. Так же в состав Global Star входят наземные сегменты, обеспечивающие взаимодействие терминалов абонентов с сотовыми сетями. При передачи данных или голоса сигнал от абонента, находящегося не в зоне действия сотовой сети, передается на спутник, откуда ретранслируется в ближайшую наземную станцию, где по стандартными сотовым сетям сигнал передается адресату.

Thuraya – региональная спутниковая система связи, разработанная компанией Boeing Satellite Systems и покрывающая примерно 40% земного шара (в основном Африку, Европу и Азию), в которую входит около 99 стран с общим населением порядка 2,5 миллиардов человек. При этом в состав системы входит всего 2 спутника, обеспечивающих одновременную передачу данных по 13,750 каналам. Основное назначение системы Thuraya - обеспечение спутниковой телефонной связи, причем терминалы абонентов по размеру сопоставимы с обыкновенными сотовыми телефонами и работают как в сотовых сетях, так и в спутниковой системе связи Thuraya. То есть, если абонент находится в зоне действия стандартной сотовой сети, то для трансляции разговора и данных будет использоваться сотовая сеть, как только абонент выйдет из зоны действия сотовой сети, включится режим передачи данных и голоса через спутники системы Thuraya. Так же с помощью сети спутников Thuraya можно определять положение абонента, т.е. использовать систему для навигации.

Iridium – спутниковая система свиязи состоящая из 66 низкоорбитальных спутников, обеспечивающих 100% покрытие Земли, однако в некоторых странах система не работает, например в Венгрии, Польше, Северной Корее и некоторых других странах. Система обеспечивает телефонную связь, передачу данных и коротких сообщений. Терминалы абонентов небольшого размера, сравнимого со стандартными сотовыми телефонами и обеспечивают автоматическое переключение между сотовой и спутниковой связью при выходе из зоны действия сотовых сетей и возвращения обратно.

ICO - система спутниковой связи, разработанная компанией ICO Global Communications и функционирующая с 2002-го года. Система спутниковой связи обеспечивает полнодуплексную передачу данных и голоса на скорости до 9,6 Кбит/с. Система ICO состоит из десяти спутников расположенных на орбите высотой около 10390 км. Терминалы абонентов по размеру и весу чуть больше сотового телефона.

Euteltracs – система спутниковой связи, основное назначение которой управление и контроль транспортными перевозками в Европе. По своей архитектуре и назначению Euteltracs сходyа с Американской спутниковой системой Omnitracs. Система Euteltracs основывается на передачи коротких (до 1900 символов) сообщений, включающих необходимые данные для организации транспортных перевозок. Система Euteltracs состоит из группировки спутников, наземной центральной станций, наземной станций маршрутизации и мобильных терминалов связи. Информационный обмен централизованный и осуществляется через наземную центральную станцию, расположенную во Франции. Одновременно возможно обслуживание 45000 единиц транспорта в 15 странах, в том числе и в России.

Omnitracs – спутниковая система связи для управления и контролем транспортных перевозок, разработанная в США и введенная в эксплуатацию в 1989 году. Назначение и устройство аналогичное спутниковой системы связи Euteltracs, используемой в Европе. Управление системой – централизованное и осуществляется из единого наземного центра управления, обрабатывающего ежедневно несколько миллионов сообщений.

Prodat - спутниковая система связи для наземных объектов. В системе используются алгоритмы и технологии позволяющие уменьшить влияние рельефа местности на качество передаваемого сигнала. Система находится в эксплуатации с 1992 года. Терминалы абонента весьма громоздкие и состоят из трех частей: внешнего блока со всенаправленной антенной диаметром более метра, блока связи и терминала пользователя размером с ноутбук.

Odyssey – спутниковая система связи, обеспечивающая покрытие от 65° южной широты до 75° северной широты и обеспечивающая практически круглосуточное вещание. Основные виду услуг Odyssey: речевая связь, передача коротких сообщений, электронной почты и определение местоположения абонентов. Однако погрешность определения координат очень большая (до 15 км) и значительно уступает спутниковым навигационным системам. Система Odyssey состоит из группировки спутников (12 спутников на средневысотной орбите, на высоте около 10354 км), наземных базовых станций и терминалов пользователей. Стоит отметить, что ретрансляции данных между спутниками невозможна, вся передача ведется через базовые станции.

ACeS (Asia Cellular System) – геостационарная, регионарная система спутниковой связи, созданная в начале 1996 года. В системе используется только один низкоорбитальный спутник - Garuda 1, запущенный в 2000 году с зоной покрытия - Юго-восточная Азия и Индия. Спутник способен обслуживать более 1 миллиона абонентов при 11 000 одновременных телефонных соединений. Стоит отметить, что срок эксплуатации спутника Garuda 1 около 14 лет.

Orbcom – низкоорбитальная система спутниковой связи, предназначенная для передачи коротких сообщений. Первый спутник системы Orbcom был запущен в 1991 году, сейчас спутников – 36 (по данным на 2000 год). Спутники системы Orbcom обеспечивают покрытие всей поверхности Земли. Кроме орбитальной системы спутников в состав Orbcom входят: узловые наземные станции, связанные с региональными центрами управления, и терминалы пользователей. Передача данных осуществляется следующем образом. С терминала пользователя на ближайший спутник передается сообщения. Если в зоне досягаемости спутника находится узловая станция, то спутник ретранслирует данные на нее, откуда они будут переданы в региональной центр, где будет составлен маршрут доставки сообщения абоненту, в том числе с использованием сотовых сетей, ну и собственно будет организована передача данного сообщения. Если в зоне спутника нет узловой станции, то сообщение будет сохранено и передано когда в зону действия попадет узловая станция, что может произойти и через несколько часов после передачи сообщения.

Гонец-Д1М – спутниковая система связи и передачи данных, состоящая из трех низкоорбитальных (1400 км) спутников: двух спутников первого поколения «Гонец-Д1» и модернизированного спутника «Гонец-М», с периодом обращения 114 минут. Так же в состав системы входит наземная инфраструктура, состоящая из Центра управления системой, Центра управления связным комплексом, Центральных и Региональных станций, Центра управления полетом и Баллистического центра. Наземных региональных станций 4 штуки и располагаются они в г. Москве, г. Железногорске (Красноярский край), г. Южно-Сахалинске и на полуострове Тикси. На данный момент спутниковая система связи обеспечивает покрытием всю территорию России и мощности системы, при условии выполнения программы и доведения орбитальной группировки спутников до 14 шт, будет достаточно для обеспечения связью в труднодоступных районах России до 200 000 абонентов. В 2012 году должны были запустить еще 5 спутников «Гонец-М», однако о результатах мне не известно. До 2015 года планируется расширить состав спутников связи до 14 штук.

Полярная звезда – спутниковая система связи, разрабатываемая ОАО «Газпром космические системы». Система «Полярная звезда» предназначена для обеспечения широкополосной мобильной связи на территории России и приполярных областях. Правда использоваться она будет в основном для обеспечения связи и доступа в интернет подвижных и удаленных объектов ОАО «Газпром». На данный момент (2012 год) орбитальная группировка спутников насчитывает четыре космических аппарата, располагающихся на высокоэллиптической орбите.

Глонасс – российская спутниковая навигационная система, состоящая из 31 спутника располагающихся на орбитах на высоте 19100 км, из которых 24 спутника используются по назначению, остальные спутники в резерве или на этапе технического обслуживания, а одни спутник на этапе испытания (по данным на конец 2012 года). Спутниковая система Глонасс обеспечивает определение координат с точностью 3-6 метров при использовании 7-8 спутников. Навигационные устройства абонентов могут одновременно со спутниками навигационной системы Глонасс использовать данные спутников навигационной системы GPS в общем количестве 14-19 спутников, при этом точность определения координат составит 2-3 метра.
Спутники, входящие в систему Глонасс, синхронно выдают сигнал. Устройства абонентов, принимая сигналы от спутников, засекают время получения сигнала от каждого спутника. Зная положения спутников (спутники двигаются по известным орбитам с известной скоростью) и задержки между приемами сигнала от них (чем дальше спутник, тем позже синхронный сигнал будет получен) составляется система уравнений (минимум нужно получить сигнал от четырех спутников) из которой рассчитывается положение устройства абонента. Чем больше спутников участвует в расчете, тем более точно будут определены координаты абонента.

GPS – спутниковая навигационная система, созданная министерством обороны США. GPS состоит из 30 спутников обращающихся вокруг земли по круговым орбитам на высоте порядка 20200 км. На самом деле количество спутников больше, но часть из них находится на техническом обслуживании, но в работе (на конец 2012 года) используется только 30 спутников. Система GPS обеспечивает точность определения координат 2-4 метра при использовании 6-11 спутников. Принцип работы системы GPS и Глонасс схожи, но создание спутниковой системы GPS было начато раньше. Так первый спутник системы GPS был запущен 14 июля 1974 г, а первый спутник системы Глонасс был выведен на орбиту только в 12 октября 1982 года. Так же в систему GPS входит больше спутников и GPS позволяет получить точность определения координат большую, чем система Глонасс.


На этом обзор существующих технологий, стандартов и систем беспроводной связи я закончу. Естественно, это далеко не полный перечень, но в нем приведены примеры наиболее популярных и часто используемых видов беспроводной связи. Надеюсь, обзор поможет вам проще ориентироваться в столь обширном и многообразном сегменте науки и техники, в мире беспроводных технологий, который быстро и уверенно и идет на смену устаревающим, неудобным и непрезентабельным технологиям проводной связи.


Яндекс.Метрика

Рейтинг@Mail.ru