Главная    Устройство ПК    Периферия: история создания ЭЛТ-мониторов

История создания ЭЛТ - мониторов

ЭЛТ - монитор

ЭЛТ-мониторы – это мониторы, формирующие изображение с помощью электронно-лучевой трубки, из которой под действием электростатического поля исходит поток электронов, бомбардирующий внутреннюю поверхность экрана монитора, покрытую люминофором. Люминофор под воздействием электронов начинает светиться, формируя изображение на экране монитора.

Началом истории создания ЭЛТ-мониторов можно считать 1855 году. В то время немецким стеклодувом Генрихом Гейслером было сделано, на первый взгляд, не относящееся к монитором изобретение. Он создал вакуумный стеклянный сосуд.

Вакуумный сосуд Гейслера и Плюккера

Через несколько лет после этого изобретения другой немецкий ученый, физик и математик, друг Генриха Гейслера, - Юлиус Плюккер впаял в вакуумный сосуд два электрода и подал на них напряжение. В результате возникшей разности потенциала, от одного электрода к другому пошел ток, стремящийся выровнять разность потенциалов. Под действием тока в вакуумной трубке возникло свечение, характер которого зависел от глубины вакуума.

Свечение вызывалось столкновением атомов, оставшихся в сосуде газов, с электронами, идущими от электрода с большим потенциалом к электрону с меньшим потенциалом. Так как электрон с большим потенциалом называется катодом, а с меньшим потенциалом – анодом, то поток электронов, излучаемый катодом получил название – катодные лучи.

Итак, в 1859 году Юлиусом Плюккером было совершено знаковое открытие, позволившее в дальнейшем создать ЭЛТ-мониторы.

Исследования Юлиуса Плюккера продолжил Уильям Крукс, открывший, что катодные лучи исходят перпендикулярно к катоду и распространяются прямолинейно, но могут отклоняться под действием магнитного поля. Для доказательства этого явления Уильям Крукс в 1879 году создал газоразрядную трубку, названную трубкой Крукса. Опыты с газоразрядными трубками также показали, что, попадая на некоторые вещества, катодные лучи вызывают их свечение. Впоследствии такие вещества были названы катодолюминофорами.

Трубка крукса

Первое изображение с помощью электронно-лучевой трубки было сделано только через 18 лет после многочисленных опытов и исследований катодных лучей. И это открытие принадлежит Карлу Фердинанду Брауну. Именно он разработал принцип формирования изображения с помощью электронно-лучевой трубки, впоследствии названной трубкой Брауна.

В первой модели трубки Брауну не удалось получить полный вакуум, и использовался холодной катод, требующий сильного внешнего электрического поля для испускания электронов. Все это приводило к необходимости использовать большого ускоряющего напряжения (100 киловольт). К тому же магнитное отклонение луча осуществлялось только по вертикали. Отклонение по горизонтали (изменение сигнала по времени) осуществлялось с помощью вращающегося зеркала.

Фердинанд Браун

Свое изобретение Браун использовал, как осциллограф, для изучения электрических колебаний. Снаружи, вокруг узкой части стеклянной трубки между диафрагмой и экраном, располагался электромагнит. Исследуемый ток подводили к катушке электромагнита, в результате возникало электромагнитное поле, отклоняющее катодный луч. Катодный луч высвечивал на флуоресцирующем экране линию, соответствующую изменению магнитного поля под действием тока. Высвеченная линия позволяла определить изменение тока, подводимого к электромагниту.

Светящаяся линия проектировалась на внешний экран с помощью зеркала. Поворачивая зеркало, можно было наблюдать изменение сигнала по времени – двумерную кривую линию, форма которой зависела от амплитуды изменения подводимого к электромагниту тока и скорости поворота зеркала.

Фердинанд Браун не патентовал свое изобретение и демонстрировал его на всевозможных выставках и семинарах. В результате работу оценило множество ученых и вложило свой вклад в развитие и совершенствование электронно-лучевых трубок.

Трубка Брауна

Так уже в 1899 году И. Ценнек, ассистент Брауна, добавил второе магнитное поле, перпендикулярное первому, и получил возможность отклонения катодного луча по вертикали.

В 1903 году Артур Венельт поместил в трубку цилиндрический электрод с отрицательным, относительно катода, потенциалом. Изменение потенциала позволяло менять интенсивность катодных лучей и тем самым яркость свечения люминофора.

В 1906 году М. Дикман и Г. Глаге доработали трубку Брауна и ввели возможность управления током, подаваемым на электромагниты. В результате они смогли отображать на экране не просто изменение тока от времени, а конкретные фигуры. В том же году они получили патент на использование трубки Брауна для передачи изображений букв и штрихов.

Электронно-лучевые трубки оказались незаменимыми в различных приборах, таких как осциллографы, позволяющих исследовать быстропротекающие процессы. Но на этом область их применения не ограничивалась. Возможность формирования изображения с помощью электронно-лучевых трубок заинтересовала множество ученых во всем мире, и вскоре стали появляться все более и более совершенные устройства.

Вывод изображения на векторный кинескоп

Так в 1907 году русский физик Борис Львович Розинг разработал прибор на основе трубки Брауна, способный воспроизводить движущееся изображение, и получил патент на свою разработку в 1908-1910 гг. в России, Англии и Германии. Он же 9 мая 1911 года, на заседании Русского технического общества, продемонстрировал передачу, прием и воспроизведение на экране электронно-лучевой трубки телевизионных изображений - простых геометрических фигур.

В дальнейшем подобные приборы стали называться кинескопами, от греч. kinesis - движение и skopeo - смотреть.

Растровая развертка

Первые кинескопы были векторные. В таких кинескопах использовался один пучок катодных лучей, перемещающийся от одной точки к другой, оставляя на экране светящиеся линии, которые постепенно затухали. Затухание происходило очень быстро и обычно не превышало 0,1 секунды.

Для того, чтобы изображение оставалось на экране, его приходилось с частотой несколько десятков герц перерисовывать. Все это приводило к жестким ограничениям по количеству отображаемой на экране информации. Если требовалось отображение сложного объекта, то изображение могло начинать мерцать. Происходило это из-за того, что к концу прорисовки сложного объекта та часть его, которая выводилась первой, уже начинала гаснуть.

Вывод изображения на растровый кинескоп

Так как векторные кинескопы не могли отображать сложные графические объекты, им быстро нашлась замена в виде растровых кинескопов. Но до сих пор в различных областях науки и техники используются векторные мониторы, в основном в виде измерительных приборов, таких как осциллографы, так как позволяют получить высокое разрешение, частоту регенерации и значительно проще устроены, а, следовательно, и дешевле, чем матричные кинескопы. Также именно векторные кинескопы стали первыми использоваться в качестве мониторов для ЭВМ.

Телевизор RCS TT-5

В растровых кинескопах траектория перемещения луча по экрану всегда постоянна и не зависит от выводимых изображений. Луч пробегает по строкам экрана сверху вниз и с помощью модуляции яркости луча формирует изображение. В этом случае время вывода изображения не зависит от его сложности, но возникают ограничения по разрешению изображения, а именно по количеству и длине строк, пробегающих лучом, а также времени изменения модуляции яркости луча, определяющего сколько различных точек может быть выведено за время прохождения лучом одной строки.

Телевизор ТК-1

Но, несмотря на эти ограничения, первые электронные телевизоры использовали именно растровые кинескопы, а вот в ЭВМ растровые мониторы стали использоваться значительно позже векторных, так как требовали значительного объема памяти для регенерации изображения и обладали маленькой разрешающей способностью.

Развитие электронно-лучевых трубок шло семимильными шагами, сильно этому способствовало и развитие телевидения. Так в 1935 году в Германии началось первое регулярное телевещание для электронных телевизоров. Регулярное телевещание для телевизоров с оптико-механической разверткой началось гораздо раньше, с 1927 года в Великобритании. В 1936 году электронное телевещание стало регулярным и в Англии, Италии, Франции, а затем инициативу подхватили и другие страны.

Телевизор 17TH-1

В скором времени ЭЛТ-телевизоры стали выпускаться серийно. Так уже в 1939 году был представлен первый электронный телевизор для массового производства. Эта модель, RCS TT-5, была разработана в США в научно-исследовательской лаборатории RCA, возглавляемой Владимиром Зворыкиным, русским эмигрантом, и представляла собой большой деревянный ящик с экраном с диагональю 5 дюймов.

Первый электронный телевизор в России ТК-1 был выпущен в конце 1938 года Ленинградским заводом имени Козицкого по американской документации (в Америке подобные телевизоры выпускались с 1934 года). Производство телевизоров было крайне трудоемким и сложным процессом, множество радиодеталей поставлялось из заграницы, и всего было выпущено около 6000 телевизоров, большинство из которых использовались в качестве экспериментальных установок в научно-исследовательских лабораториях.

Телевизор КВН-49

Первый Российский серийный электронный телевизор был создан на ленинградском заводе «Радист» в конце 1939 года и назывался ''17ТН-1''. Он представлял собой громоздкую напольную тумбу с небольшим круглым экраном 17 дюймов. Производство телевизоров было все еще дорогостоящим и сложным процессом, поэтому до начала войны было выпущено всего 2000 экземпляров.

Первый массово-серийный и доступный простым потребителям в России стал телевизор КВН-49-1, разработанный в 1947 году в Ленинградском НИИ телевидения. Серийный выпуск телевизоров этой марки начался в 1949 году. Кстати, название КВН произошло от первых букв разработчиков телевизора: Кенигсона В.К, Варшавского Н.М и Николаевского И.А, ну а 49, как вы догадались, от года начала серийного выпуска.

В 1950 году произошел очередной прорыв в технологии. В США был разработан масочный цветной кинескоп с тремя электронными пушками.

Экран кинескопа был покрыт тремя типами люминофора, светящегося под действием электронных лучей красным, зеленым и синим цветом. Каждая точка изображения формировалась тремя участками люминофора разного типа, в совокупности воспринимающаяся глазом, как единая цветная точка.

В основании кинескопа располагалось три электронно-лучевые пушки. Если смотреть сверху на них, то они представляли собой вершины равностороннего треугольника. Лучи, излучаемые этими пушками, синхронно пробегали все строки развертки, также как это делал единственный луч в одноцветных кинескопах. Но каждый луч попадал на свой тип люминофора, и, модулируя интенсивность лучей, на экране можно было отобразить цветные точки.

Принцип устройства различных типов масок ЭЛТ - мониторов

Для того чтобы лучи, излучаемые электронными пушками, попадали на свой участок из трех типов люминофора и не засвечивали соседние участки, использовалась теневая решетка, состоящая из множества отверстий, через которые проходили лучи. Благодаря теневой решетке, повышалась контрастность изображения, так как лучи, переходя от одного участка экрана к другому, не задевали люминофоры чужого типа. Но, в свою очередь, уменьшалось количество проходящих электронов, что уменьшало яркость картинки.

Цветной телевизор Wistinghouse H840CK15

В первых кинескопах в качестве маски использовался тонкий стальной лист с круглыми отверстиями. Такая маска назвалась теневой, она позволяла максимально точно позиционировать электронный лучи, но круглые отверстия задерживали достаточно большую часть электронов. Впоследствии отверстия стали делать коническими, что позволило увеличить их пропускную способность. Теневая маска обеспечивала высокую точность изображения, но меньшую яркость (по сравнению с щелевой и аппретурной решеткой). Такие маски чаще всего применялись в мониторах.

Впоследствии в телевизионных кинескопах электронные пушки стали располагать планарно, параллельно земле, что упрощало настройки кинескопа и позиционирование лучей. Для таких кинескопов в маске делались овальные отверстия, и называлась она – щелевая решетка. Щелевая решетка обеспечивает более насыщенные цвета, по сравнению с теневой маской, но менее насыщенные, чем у апертурной решетки. Но в то же время получаемое изображение более четкое, чем у апетурной решетки. Однако щелевая решетка склона к муарам. В результате основная область применения таких кинескопов – телевидение.

Цветной телевизор RCA CT-100

Впоследствии такие производители, как Sony или Mitsubishi в качестве маски стали использовать апертурную решетку – множество вертикально натянутых тонких проволок. При этом электронные лучи не ограничивались, как в двух предыдущих типах масок, а фокусировались в нужных точках экрана, за счет чего прозрачность апертурной решетки была в разы выше и достигала 80%, а соответственно была выше яркость и насыщенность изображения.

Первый цветной телевизор с электронно-лучевой трубкой был выпущен в США в марте 1954 года компанией Westinghouse и назывался H840CK15, и стоил 1295 долларов. Спустя несколько недель, в США был выпущен еще один цветной телевизор, но уже компанией RCA - RCA CT-100. Он был снабжен 15-ти дюймовым цветным кинескопом и стоил около 1000 долларов. В то время, к примеру, новый, шикарный автомобиль стоил 2000 долларов, так что цветные телевизоры рассчитывались не на массовое потребление, а скорее как дорогая игрушка для ограниченного круга элиты. Вскоре цветное телевидение перешло в массы, и во всех странах появилось огромное количество различных моделей цветных телевизоров. На сайте www.earlytelevision.org можно посмотреть фотографии и описания большинства первых цветных и монохромных телевизоров и мониторов.

ЭЛТ-монитор ЭВМ SSEM

Технология отображения на ЭЛТ-телевизорах совершенствовалась год от года, и, когда настала эра ЭВМ, электронно-лучевые трубки стали использоваться для отображения результатов их работы. Конечно, произошло это не сразу. Первые ЭВМ в качестве устройств вывода использовали, в основном, различные печатающие устройства или записывали результат вычислений на магнитную ленту. Но уже тогда многие ЭВМ оснащались электронно-лучевыми трубками, но использовались они не как мониторы, а как осциллографы, контролирующие исправность электрических цепей вычислительных машин или даже, как запоминающие устройства.

Ярким примером служит ЭВМ SSEM (Manchester Small-Scale Experimental Machine) – манчестерская малая экспериментальная машина, заработавшая в июне 1948 года.

В ней использовалось целых три электронно-лучевые трубки. Однако только одна из них отображала информацию, две других представляли собой оперативную память, позволившую избавиться от громоздких, трудоемких и опасных ртутных линий задержки.

На прообраз монитора в SSEM выводилась информация, содержавшаяся в двух других электронно-лучевых трубках.

ЭЛТ-мониторы для вывода информации использовались и в ЭВМ CSIRAC (Council for Scientific and Industrial Research Automatic Computer) - Автоматическом Компьютере Совета по Научным и Промышленным Исследованиям. CSIRAC был разработан в Австралии и заработал в ноябре 1949 года.

ЭЛТ-монитор, ЭВМ CSIRAC

В этой ЭВМ вывод результатов работы осуществлялся все еще на телетайп, но для контроля процесса работы использовался ЭЛТ-монитор, отображавший состояние регистров ЭВМ, используемых при вычислении.

Еще один случай использования электронно-лучевой трубки для вывода результатов работы ЭВМ зафиксирован в 1950 году. Произошло это в Англии в Кембриджском университете. И использовалась она в электронно-вычислительной машине EDSAC (Electronic Delay Storage Automatic Computer).

ЭЛТ-монитор, используемый в ЭВМ EDSAC

Естественно, мониторы, используемые в EDSAC, SSEM, CSIRAC и в других ЭВМ того времени, сильно отличались от современных ЭЛТ-мониторов и больше походили на осциллографы. Но все же это были первые попытки вывода информации не на принтер, а на электронный монитор, в конечном итоге приведшие к созданию современного ЭЛТ-монитора.

Начиная с 50-х годов, практически все ЭВМ в том или ином виде использовали ЭЛТ-трубки. Наиболее показательной в этом плане является ЭВМ Whirlwind (Вихрь), созданная в 1951 году в США. Использовалась она в станции американской ПВО «SAGE 1» и предназначалась для обработки в режиме реального времени непрерывно поступающего потока данных о состояния воздушной обстановки и фиксации информации о вторжении самолетов в воздушное пространство США.

ЭЛТ-мониторы в командном пункте ПВО SAGE

Естественно, просто обработать данные было недостаточно. Было необходимо в режиме реального времени отображать полученные данные, а именно положение обнаруженных воздушных объектов. Сделать это с помощью распространенного в то время телетайпа было невозможно. Во-первых, потребовалось бы огромное количество бумаги, а, во-вторых, распечатанная таким образом информация была ненаглядной и требующей значительных усилий и времени для принятия решений, которого у военных, в случае вторжения вражеской авиации, не было.

Поэтому было принято решение, в качестве основного устройства отображения, использовать ЭЛТ-монитор, позволяющий наглядно, а главное в режиме реального времени, отображать всю информацию, требующуюся для работы системы ПВО.

Демонстрация работы системы ПВО SAGE состоялась 20 апреля 1951 года. Данные с радара, установленного в заливе Кейп-Код, передавались в командный центр, где обрабатывались в ЭВМ Whirlwind, а затем отображались на экранах ЭЛТ-мониторов в виде движущихся точек, соответствующих положению обнаруженных самолетов.

Дисплейная станция ЭВМ DEC PDP-1

В конечном итоге, в США была создана целая сеть из 23-х командных пунктов ПВО SAGE, обеспечивающих защиту воздушных границ США долгие годы.

В шестидесятых годах мониторами оснащались уже практически все ЭВМ, и их стали производить серийно. Для разгрузки центрального процессора ЭЛТ-мониторы оснащали своими вычислительными ресурсами, и они стали называться дисплейными станциями.

Первой такой дисплейной станцией была оснащена ЭВМ «DEC PDP-1». Дисплейная станция была монохромной, имела ЭЛТ-дисплей, диаметром 16 дюймов с разрешением 1024 х 1024 точки. Под разрешением в векторных мониторах понимается количество точек, которые могут быть заданы, в качестве граничных координат отображаемых отрезков.

Вскоре появился и первая коммерческая дисплейная станция IBM 2250. IBM 2250 была разработана в 1964 году и использовалась в ЭВМ серии System/360.

Дисплейная станция IBM

IBM 2250 имела дисплей размером 12х12 дюймов с разрешением 1024х1024 точки и поддерживала частоту обновления экрана в 40 Гц. Отображаемые символы, цифры и буквы состояли из отдельных отрезков и были максимально упрощены для увеличения производительности.

В памяти дисплейной станции были заложены специальные подпрограммы, отвечающие за форматирование символов на экране. Таким образом, центральному процессору ЭВМ требовалось только указать, какой символ и где вывести на экране. Расчет отображаемого символа и управление катодным лучом производилось уже в самой дисплейной станции, что сильно разгружало ЭВМ.

Описанные выше дисплейные станции, как и их прототипы, были векторными. Между тем популярность ЭВМ набирала рост. Многие предприятия использовали ЭВМ. Но в шестидесятых годах ЭВМ представляли собой дорогостоящие устройства, и обеспечить всех специалистов своей ЭВМ было невозможно. В результате, начали развиваться терминальные системы, в которых ЭВМ отдавалась в распоряжение сразу нескольким пользователям. Доступ к вычислительным ресурсам осуществлялись через специальные терминалы, оборудованные монитором, устройством ввода-вывода, и подключенные к удаленной ЭВМ. Терминал IBM 2260

Одной из первых терминальных систем, оборудованных терминалами с ЭЛТ-мониторами, была система IBM 2848. Разработана эта система была в 1964 году и состояла из одного устройства контроля IBM 2848, представляющего собой прообраз современных видеоадаптеров, к которому могло подключаться до 8 терминалов IBM 2260.

Терминалы системы были оснащены ЭЛТ-мониторами, способными отображать только текст с разрешением 12 строк по 80 символов в каждой строке. Всего отображалось 64 различных знака (26 букв, 10 цифр, 25 специальных символов и 3 контрольных символа). Причем текст отображался не на всей области ЭЛТ, а только на небольшом участке, размером 4 на 9 дюймов.

В основном эта терминальная система использовалась для работы с ЭВМ серии IBM system/360. Одна из таких систем функционировала с 1969 по 1972 года в компьютерном центре в Колумбии.

В 1972 был создан один из первых цветных терминалов - IBM 3279. Первоначально терминал IBM 3279 поддерживал 4 цвета: красный, зеленый, голубой и белый, и работал только в текстовом режиме. Причем при стандартных настройках вводимые символы окрашивались в зеленый или красный цвет, а выводимые - белым или голубым.

Устройство терминальной системы

Позже были выпущены модификации, способные работать и в графическом режиме с поддержкой уже семи цветов. Примером такого терминала может служить IBM 3279G.

Терминал IBM 3279

Но настоящий бум развития ЭЛТ- мониторов начался с появления персональных компьютеров. Например, ЭВМ IBM 5100, разработанная в 1975 году, имела встроенный пятидюймовый ЭЛТ- монитор, способный отображать 16 строк по 64 символа в каждой. Видеоадаптера, как такового, в ЭВМ не было, а изображение выводилось с помощью контроллера дисплея, имеющего прямой доступ к оперативной памяти по адресам 0x0200..0x05ff, где содержался текст для отображения.

Подобная технология отображения замедляла работу ЭВМ, так как для формирования изображения использовался центральный процессор. Также негативно сказывалось на быстродействие частое обращение к ОЗУ для считывания области, содержащей информацию для отображения.

Поэтому вскоре для отображения данных на мониторе были разработаны специальные видеоадаптеры, значительно разгружающие центральный процессор и ОЗУ, так как видеоадаптеры оснащались встроенным ОЗУ и не требовали постоянного обращения к основному ОЗУ для регенерации изображения.

Монитор ЭВМ IBM 5100

Первый такой видеоадаптер был разработан в 1981 году, назывался он Monochrome Display Adapter (MDA) и использовался в IBM PC.

Как следует из названия, адаптер был монохромный, работал только в текстовом режиме с разрешением 80х25 символов (720х350 точек).

Стандартный видеоадаптер MDA основывался на чипе Motorola 6845 и содержал 4 КБ видеопамяти. Частота развёртки составляла 50 Гц.

Цвет выводимого текста определялся типом люминофора, используемого в кинескопе монитора. Обычно использовался люминофор P1 – зеленый цвет, люминофор P3 – светло-коричневый, или люминофор P4 – белый. В первых мониторах, выпускаемых для адаптера MDA, использовался зеленый люминофор, примером таких мониторы может быть IBM 5151.

Монитор ЭВМ IBM 5151

Практически одновременно, в 1981 году, был выпущен цветной видеоадаптер CGA - Color Graphics Adapter. Видеоадаптер поддерживал максимальное разрешение 640х200 и палитру, состоящую из 16 цветов. Работал видеоадаптер в двух режимах – текстовом и графическом. В текстовом режиме можно было использовать все 16 цветов и разрешение, либо 40 на 25 символов, либо 80 на 25 символов.

В графическом режиме при разрешении 320 на 200 пикселей можно было использовать 4 цвета из стандартных политр: пурпурный, сине-зелёный, белый и черный или красный, зелёный, коричневый/жёлтый и черный. При разрешении 640х200 отображение было монохромным (черно-белым).

Дополнительные настройки позволяли формировать свои палитры из доступных 16 цветов и, например, делать отображение при разрешении 640х200 не черно-белым, а черно-зеленым и так далее.

Монитор ЭВМ IBM 5153

В момент выпуска видеоадаптера не было мониторов, способных использовать все его возможности. Имеющиеся монохромные мониторы или NTSC-совместимый телевизор могли подключаться к видеоадаптеру только через композитный разъем. Но при этом качество отображения было ужасным, особенно при высоком разрешении (640х200).

Монитор, полностью поддерживающий все функции видеоадаптера, был выпущен компанией IBM только в 1983 году – это был 12-дюймовый монитор IBM 5153. Позже различными производителями было выпущено множество аналогов этого монитора.

В 1984 году компанией Hercules Computer Technology был выпущен еще один видеоадаптер - Hercules Graphics Card (Hercules) - графический адаптер Геркулес. Он поддерживал не только текстовый режим, как MDA, с разрешением 80х25 символов, но и графический, с разрешением 720х348. Hercules все еще оставался монохромным, но поддержка более высокого, чем CGA разрешения, совместимость с широко распространенными мониторами стандарта MDA, такими как IBM 5151, сделали его популярной альтернативой видеоадаптера CGA.

Однако не видеоадаптеры CGA, не видеоадаптеры Hercules не удовлетворяли растущим потребностям пользователей ЭВМ. Поэтому в том же 1984 году появился видеоадаптер Enhanced Graphics Adapter (EGA), что в переводе означает - усовершенствованный графический адаптер.

Видеоадаптер EGA значительно превосходил по техническим возможностям своих предшественников. Он мог формировать графическое изображение, используя 16 цветов из 64 цветной палитры при разрешении 640х350 точек.

Монитор ЭВМ IBM 5154

Но для полноценного использования нового видеоадаптера потребовались мониторы нового стандарта, позволяющие работать с цветным изображением высокого разрешения (естественно высокого для того времени).

Чтобы не оказаться в невыгодной позиции на рынке, разработчики нового видеоадаптера предусмотрели возможность поддержки различных цветовых режимов и разрешений, повторяющих возможности предыдущих стандартов и возможность вывода изображения на мониторы предыдущих стандартов. Естественно, при этом страдало качество изображения, либо уменьшалась разрешающая способность, либо количество цветов, но при этом открывались дополнительные возможности для пользователей, которые могли модернизировать свои системы постепенно, не затрачивая сразу большие суммы.

Перед подключением монитора на плате необходимо было настроить конфигурацию видеоадаптера для работы с выбранным стандартом монитора и режима формирования изображения (графическое, тестовое, разрешение картинки и т.д.). Для этого предназначались шесть переключателей, обычно, располагающихся на задней стороне видеоадаптера. В частности, поддерживались следующие стандарты мониторов:

  • монохромные мониторы стандарта MDA, такие как IBM 5151;
  • цветные мониторы стандарта CGA, такие как IBM 5153;
  • цветные мониторы стандарта EGA, такие как IBM 5154.
IBM PS/2 Model 25

Стоит отметить, что большинство видеоадаптеров EGA выпускались всего лишь с 64 кб памяти, что было недостаточно для отображения 16-цветного изображения с разрешением 640x350 точек, а позволяло использовать только 4 цвета или 16 цветов, но при разрешении 640x200.

Естественно, были видеоадаптеры с 128 кб памяти и даже с 256 кб, но стоили они значительно дороже, и далеко не все могли их себе позволить, впрочем, как и новые EGA-мониторы. Так что на практике в большинстве случаев возможности нового видеоадаптера использовались не полностью, но, несмотря на это, он пользовался большой популярностью, и замена ему вышла только спустя три года. Это был новый стандарт видеоадаптеров MCGA.

MultiColor Graphics Adapter (MCGA) ? многоцветный графический адаптер, выпущенный в 1987 году. Он значительно превосходил все существующие на тот момент видеоадаптеры по количеству цветов в палитре, составляющим 262144.

Но объем видеопамяти был маленький, всего 64 Кб, что сильно снижало его возможности, но это положительно сказалась на его цене.

Единовременно адаптер мог отображать 256 цветов, выбранных из палитры, но из-за ограниченной видеопамяти разрешение экрана при этом составляло всего 320х200. При монохромном отображении или в текстовом режиме разрешение было несколько выше.

Основные характеристики графического адаптера следующие:

ЭВМ IBM PS/2 Model 30

- объем памяти: 64 Кб;

- тестовое разрешение: 640x400 (80х50 символов при размере символа 8х8 или 80х25 символов при размере символа 8х16);

- количество цветов: 256, выбираемых из палитры 262144 цветов;

- разрешение экрана при отображении 256 цветов: 320x200;

- разрешение экрана в монохромном режиме: 640?480;

- частота строчной развертки: 31,5 KГц.

Впервые этот адаптер использовался в ЭВМ IBM PS/2 Model 30, представленной второго апреля 1987 года. Причем он представлял собой не отдельную плату, а встраивался в материнскую плату ЭВМ. Позже MCGA использовался в IBM PS/2 Model 25 тоже в виде интегрированной в материнскую плату системы.

Адаптер не успел завоевать широкую популярность, так как очень быстро был вытеснен сильно превосходящим его графическим адаптером VGA. И после снятия с производства ЭВМ IBM PS/2 25 и 30 перестал выпускаться и адаптер MCGA.

Графический адаптер VGA (Video Graphics Array) был разработан компанией IBM в 1987 и впервые был использован в ЭВМ IBM PS/2 Model 50. Вскоре VGA стал общепризнанным стандартом мониторов и видеоадаптеров.

Основное разрешение, поддерживаемое адаптером VGA, было 640х480 пикселей, при этом одновременно отображалось 16 цветов, выбираемых из палитры 262144 оттенка. Новое разрешение позволяло более качественно отображать картинку и имело отношение сторон 4:3, которое надолго стало стандартом, и только в последние годы было вытеснено широкоформатным отображением, как в мониторах, так и в телевизорах, которые в принципе с каждым днем все меньше и меньше отличаются от мониторов.

IBM PS/2 Model 50

Видеоадаптер VGA поддерживал и другие расширения:

  • 320x200 пикселей, 4 цвета;
  • 320x200 пикселей, 16 цветов;
  • 320x200 пикселей, 256 цветов;
  • 640x200 пикселей, 2 цвета;
  • 640x200 пикселей, 16 цветов;
  • 640x350 пикселей, монохромный;
  • 640x350 пикселей, 16 цветов;
  • 640x480 пикселей, 2 цвета;
  • 640x480 пикселей, 16 цветов,

и это не считая текстового режима отображения.

В отличие от предыдущих графических адаптеров, в VGA использовался аналоговый сигнал для передачи отображаемой информации монитору. Использование аналогового сигнала позволяло уменьшить количество проводов в кабеле, так как передавать требовалось только сигналы трех основных цветов и сигналы синхронизации, и отдельный канал выделялся для передачи служебной информации. Также новый аналоговый интерфейс связи между графическим адаптером и монитором позволял в дальнейшем увеличивать количество единовременно отображаемых цветов без изменения интерфейса связи с монитором и собственно без изменения самого монитора.

Но для работы с графическими адаптерами VGA были нужны новые многочастотные аналоговые мониторы. Эти мониторы могли работать с различной частотой кадров, что позволяло им поддерживать режимы с различной разрешающей способностью и практически неограниченное число цветов, и полностью обеспечивать весь потенциал графических адаптеров VGA.

Монитор IBM Think Vision C220P SVGA монитор Viewsonic CS790 SuperClear Монитор Sony GDM-FW900 24

Со временем графические интерфейсы операционных систем прочно вошли в нашу жизнь, появлялось огромное число видеоигр и различных приложений, требующих высокого разрешения и способности отображение более чем 256 цветов. Видеоадаптер VGA не был в состоянии удовлетворить возросшие потребности пользователей, в результате многие фирмы стали выпускать собственные расширенные версии видеоадаптера VGA, впоследствии получивших общее название Super VGA или SVGA. Со временем возможности видеоадаптеров SVGA росли. Стали поддерживаться режимы: High Color и True Color, в которых одновременно отображалось 32768 и более чем 16,7 миллионов различных цветов. Поддерживались разрешения: 800х600, 1024х760, 1280х1024, 1600х1200 и т.д.

Параллельно, с развитием видеоадаптеров SVGA, совершенствовались и мониторы. Увеличивалась частота развертки, поддерживаемые разрешения, качество цветопередачи и т.д.

Казалось, что ЭЛТ-мониторы прочно и надолго вошли в нашу жизнь, но буквально за несколько лет про них практически забыли, и сейчас мало у кого можно их встретить. Всему виной стали ЖК-мониторы, незаметно, в тени славы ЭЛТ-мониторов, достигнувшие вершин качества отображения, сравнимых с качеством отображения и цветопередачи ЭЛТ-мониторов. Но при этом ЖК-мониторы были более компактные и эргономичные. Естественно у них были свои недостатки, но они все менее и менее сказываются на их качестве. Но более подробно об истории ЖК-мониторов и их устройствах поговорим в одной из следующих статей.



Яндекс.Метрика

Рейтинг@Mail.ru